M 9.1 Weiterentwicklung der Zahlvorstellung (ca. 14 Std.)
Die Schüler haben am Gymnasium bereits zweimal den zur Verfügung stehenden Zahlenbereich erweitert; die Unvollständigkeit der bisher verwendeten Menge der rationalen Zahlen an einer Nahtstelle zwischen Geometrie und Algebra macht ihnen die Notwendigkeit einer erneuten Erweiterung des Zahlenbereichs deutlich. Über den Wurzelbegriff lernen sie reelle Zahlen kennen, mithilfe numerischer Verfahren bestimmen sie exemplarisch die Dezimalbruchentwicklung irrationaler Zahlen. Schließlich erarbeiten sie Rechenregeln für Wurzeln und üben den Umgang mit Wurzeltermen.
M 9.2 Funktionale Zusammenhänge
In Jahrgangsstufe 8 haben sich die Schüler mit dem Begriff Funktion und verschiedenen Beispielen dazu befasst. Anhand quadratischer Terme entwickeln sie ihre Fähigkeit weiter, funktionale Zusammenhänge zu erfassen. Dabei bewahren sie den breiten Blick auf Funktionen und stellen immer wieder Bezüge zu den ihnen bereits bekannten Funktionen her. Der Einsatz von Funktionsplottern unterstützt die Schüler beim Aufbau des Verständnisses der betrachteten Zusammenhänge.
M 9.2.1 Graphen quadratischer Funktionen und deren Nullstellen (ca. 18 Std.)
Die Jugendlichen machen sich mit Funktionen zweiten Grades und deren Graphen vertraut. Die Frage nach Nullstellen führt sie dabei unmittelbar zu quadratischen Gleichungen. Bei paralleler Betrachtung von Funktionsgraph und entsprechender Gleichung entwickeln sie Verständnis dafür, wie sich die Änderung von Koeffizienten eines quadratischen Funktionsterms auf Form und Lage der zugehörigen Parabel, auf deren Achsenpunkte und damit auf die Lösungen der entsprechenden Gleichungen auswirkt. Gleichzeitig lernen sie graphische und rechnerische Verfahren zum Lösen quadratischer Gleichungen kennen und erarbeiten sich die allgemeine Lösungsformel. Dabei lernen sie die binomischen Formeln als nützliches Hilfsmittel kennen.
M 9.2.2 Quadratische Funktionen in Anwendungen (ca. 16 Std.)
Die Jugendlichen bearbeiten Anwendungsbeispiele aus unterschiedlichen Bereichen. Dabei gehen sie zur Lösung je nach Problemstellung von der zugehörigen quadratischen Funktion und deren Graph oder von der entsprechenden quadratischen Gleichung aus und vertiefen die in M 9.2.1 erarbeiteten Zusammenhänge. Beim Aufstellen von Parabelgleichungen ergibt sich die Notwendigkeit, Kenntnisse über lineare Gleichungssysteme wieder aufzugreifen und zu erweitern. Die Schüler greifen auf die aus dem vergangenen Schuljahr bekannten Funktionstypen zurück und betrachten verschiedene Schnittprobleme; sie lösen die entstehenden Gleichungen rechnerisch und graphisch. Dabei ergeben sich quadratische Gleichungen auch aus Bruchgleichungen, sodass die Schüler Kenntnisse über Bruchterme aus Jahrgangsstufe 8 auffrischen und vertiefen.
Die Schüler verallgemeinern ihre Kenntnisse über Quadratwurzeln und übertragen die aus den vorherigen Jahrgangsstufen bekannten Rechenregeln auf Potenzen mit rationalen Exponenten, wobei sie auch Grundlagen für die Beschäftigung mit Exponentialfunktionen erwerben.
- allgemeine Wurzeln
- Rechenregeln für Potenzen mit rationalen Exponenten
In direkter Fortführung der Themen aus Jahrgangsstufe 8 beschäftigen sich die Schüler systematisch mit zusammengesetzten Zufallsexperimenten. An Baumdiagrammen veranschaulichen sie den Ablauf solcher Vorgänge. Sie lernen die Pfadregeln als Axiome kennen und verwenden diese zielgerichtet zur Bestimmung von Wahrscheinlichkeiten. Die Jugendlichen ergänzen theoretische Überlegungen durch Simulationen z. B. mit Urnen oder Zufallszahlen.
- elementare zusammengesetzte Zufallsexperimente, Pfadregeln und ihre Anwendung
M 9.5 Das rechtwinklige Dreieck
Die Satzgruppe des Pythagoras stellt nicht zuletzt wegen ihrer reichhaltigen Bezüge zu anderen Inhalten für die Schüler ein zentrales Thema dieser Jahrgangsstufe dar. Neben den Aussagen dieser Sätze über Flächeninhalte erfahren die Jugendlichen deren praktische Bedeutung für das Berechnen von Längen. Mit der Einführung von Sinus, Kosinus und Tangens werden weitere Möglichkeiten erschlossen, mit denen Zusammenhänge am rechtwinkligen Dreieck untersucht werden können.
M 9.5.1 Die Satzgruppe des Pythagoras (ca. 14 Std.)
Die Schüler erkennen, dass sie mithilfe der pythagoräischen Sätze in rechtwinkligen Dreiecken Berechnungen durchführen und Streckenlängen konstruieren können, deren Maßzahlen Quadratwurzeln sind. Beim Beweis der Satzgruppe machen sie sich wiederum die generelle Struktur mathematischer Sätze bewusst und üben erneut folgerichtiges Argumentieren. An vielfältigen Beispielen auch aus alltagsbezogenen Sachzusammenhängen wird ihnen die Bedeutung der pythagoräischen Lehrsätze deutlich.
- Katheten- und Höhensatz, Satz des Pythagoras und seine Umkehrung
- Anwendungen im algebraischen und geometrischen Kontext
M 9.5.2 Trigonometrie am rechtwinkligen Dreieck (ca. 8 Std.)
Bei der Beschäftigung mit den Zusammenhängen zwischen Winkelmaßen und Seitenlängen in rechtwinkligen Dreiecken werden Sinus, Kosinus und Tangens für spitze Winkel definiert. Die Schüler lösen insbesondere Anwendungsaufgaben u. a. aus der Physik oder dem Vermessungswesen durch Rechnung, wobei ihnen ihr Wissenszuwachs besonders deutlich wird, da sie viele solcher Probleme bislang nur konstruktiv lösen konnten.
M 9.6 Fortführung der Raumgeometrie (ca. 25 Std.)
Eigenschaften der aus dem Alltag bekannten Körper Prisma, Zylinder, Pyramide und Kegel werden genauer untersucht. Bei Überlegungen an Schrägbildern und Netzen entwickeln die Schüler ihr räumliches Vorstellungsvermögen weiter, beim Bestimmen von Oberflächeninhalten und Volumina festigen sie ihre Kenntnisse über Flächen- bzw. Raummessung.
Die Schüler zeichnen bzw. skizzieren Schrägbilder, um Längen und Winkel an räumlichen Figuren zu veranschaulichen. Gestützt auf ihre algebraischen Kenntnisse berechnen sie geometrische Größen; sie erfahren erneut, dass diese Fertigkeiten unabdingbare Voraussetzung für mathematisches Handeln sind. Als abrundende Wiederholung und Vernetzung bearbeiten die Jugendlichen Aufgabenstellungen, bei denen auch andere Inhalte dieses oder des vorigen Schuljahrs, wie z. B. Trigonometrie, Strahlensatz oder Funktionen, benötigt werden.
- Netz, Oberflächeninhalt und Volumen von geradem Prisma und geradem Zylinder
- Netz, Oberflächeninhalt und Volumen von Pyramide und Kegel
- Überlegungen an Körpern zur Bestimmung von Streckenlängen und Winkelgrößen; Sachanwendungen